An optimum cubically convergent iterative method of inverting a linear bounded operator in Hilbert space

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On a Cubically Convergent Iterative Method for Matrix Sign

We propose an iterative method for finding matrix sign function. It is shown that the scheme has global behavior with cubical rate of convergence. Examples are included to show the applicability and efficiency of the proposed scheme and its reciprocal.

متن کامل

A cubically convergent class of root finding iterative methods

In this paper, we propose a new two-parameter class of iterative methods to solve a nonlinear equation. It is proved that any method in this class is cubically convergent if and only if the parameters sum up to one. Some of the existing third-order methods, by suitable selection of parameters, can be put in this class. Every iteration of the class requires an evaluation of the function, three o...

متن کامل

An Efficient Cubically Convergent Two-Point Newton Method

A numerical procedure fo r solving non-linear equations is presented which is a modification of the Two Point Newton Method developed by the author earlier. It is shown that the method presented here has a third order convergence. The modified procedure incorporates computation of the x value for an intermediate point using the original Two Point Newton Method. The derivative of the intermediat...

متن کامل

On Constructing a Cubically Convergent Numerical Method for Multiple Roots

We propose the numerical method defined by xn+1 = xn − λ f(xn − μh(xn)) f ′(xn) , n ∈ N, and determine the control parameter λ and μ to converge cubically. In addition, we derive the asymptotic error constant. Applying this proposed scheme to various test functions, numerical results show a good agreement with the theory analyzed in this paper and are proven using Mathematica with its high-prec...

متن کامل

Cubically Convergent Iterations for Invariant

We propose a Newton-like iteration that evolves on the set of fixed dimensional subspaces of Rn and converges locally cubically to the invariant subspaces of a symmetric matrix. This iteration is compared in terms of numerical cost and global behavior with three other methods that display the same property of cubic convergence. Moreover, we consider heuristics that greatly improve the global be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pacific Journal of Mathematics

سال: 1960

ISSN: 0030-8730,0030-8730

DOI: 10.2140/pjm.1960.10.1107